
Pfleeger, Security in Computing, ch. 2 1

Security in Computing

Chapter 2

Elementary Cryptography (part 4)

Pfleeger, Security in Computing, ch. 2 2

Chapter Outline

2.1 Terminology and Background
2.2 Substitution Ciphers
2.3 Transpositions (Permutations)
2.4 Making �“Good�” Encryption Algorithms
2.5 The Data Encryption Standard (DES)
2.6 The AES Algorithm
2.7 Public Key Encryption
2.8 Uses of Encryption
2.9 Summary

Pfleeger, Security in Computing, ch. 2 3

AES Introduction

DES:
�– too weak
�– 3DES too slow (esp in

software)
�– theoretical attacks

(linear, diff.
cryptanalysis, weak
keys, ...)

NIST calls for replacement
(1997)

Requirements:
�– resistence to known

cryptanalytic attacks
�– speed in hw and sw
�– limited size (e.g. smart

cards)
�– resistence to attacks on

implementations
(timing, power, etc.)

�– instruction level
parallelism potential

�– others Pfleeger, Security in Computing, ch. 2 4

AES

winning algorithm: Rijndael (RINE dahl)
no mathematical operators
�– endianness doesn't matter

variable
�– block length
�– key size

not Feistel structure

Pfleeger, Security in Computing, ch. 2 5

Rijndael Overview

Plaintext fed into state array (matrix)
There are 9, 11, or 13 cycles
�– depends on whether 128, 192, or 256-bit keys are

used
Each cycle:
�– substitution
�– shift
�– mix column
�– XOR with subkey

Pfleeger, Security in Computing, ch. 2 6

Rijndael Cycle
4 4-byte blocks
Byte substitution
�– S-box

Shift rows
�– simple permutation

Mix columns
�– substitution
�– arithmetic over GF(28)

Add round key
�– XOR with part of key

S

k

S

k

S

k

S

k

n
tim

es

Pfleeger, Security in Computing, ch. 2 7

Rijndael Cycle
4 4-byte blocks
Byte substitution
�– S-box

Shift rows
�– simple permutation

Mix columns
�– substitution
�– arithmetic over GF(28)

Add round key
�– XOR with part of key

S

k

S

k

S

k

S

k
n

tim
es

Pfleeger, Security in Computing, ch. 2 8

Rijndael Cycle
4 4-byte blocks
Byte substitution
�– S-box

Shift rows
�– simple permutation

Mix columns
�– substitution
�– arithmetic over GF(28)

Add round key
�– XOR with part of key

S

k

S

k

S

k

S

k

n
tim

es

Pfleeger, Security in Computing, ch. 2 9

Rijndael Cycle
4 4-byte blocks
Byte substitution
�– S-box

Shift rows
�– simple permutation

Mix columns
�– substitution
�– arithmetic over GF(28)

Add round key
�– XOR with part of key

S

k

S

k

S

k

S

k

n
tim

es

Pfleeger, Security in Computing, ch. 2 10

Chapter Outline

2.1 Terminology and Background
2.2 Substitution Ciphers
2.3 Transpositions (Permutations)
2.4 Making �“Good�” Encryption Algorithms
2.5 The Data Encryption Standard (DES)
2.6 The AES Algorithm
2.7 Public Key Encryption
2.8 Uses of Encryption
2.9 Summary

Pfleeger, Security in Computing, ch. 2 11

Secret Key Encryption

How many keys necessary for n people?

Pfleeger, Security in Computing, ch. 2 12

Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys

Pfleeger, Security in Computing, ch. 2 13

Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
�– 2 people need 1 key

Pfleeger, Security in Computing, ch. 2 14

Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
�– 2 people need 1 key
�– 3 people need 3 keys

Pfleeger, Security in Computing, ch. 2 15

Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
�– 2 people need 1 key
�– 3 people need 3 keys
�– 4 people need 6 keys

Pfleeger, Security in Computing, ch. 2 16

Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
�– 2 people need 1 key
�– 3 people need 3 keys
�– 4 people need 6 keys
�– 5 people need ?

Pfleeger, Security in Computing, ch. 2 17

Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
�– 2 people need 1 key
�– 3 people need 3 keys
�– 4 people need 6 keys
�– 5 people need 10 keys

for 5 people:
�– 6 + 4 = 10

Pfleeger, Security in Computing, ch. 2 18

Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
�– 2 people need 1 key
�– 3 people need 3 keys
�– 4 people need 6 keys
�– 5 people need 10 keys

for 5 people:
�– 6 + 4 = 10 n n 1

2
=O n2

for n people?

Pfleeger, Security in Computing, ch. 2 19

Secret Key Encryption Problems

How many keys are necessary?
�– O(n2) keys

How do you create and distribute the keys?

Pfleeger, Security in Computing, ch. 2 20

Asymmetric Algorithm

encryption, decryption keys different
encryption key: KE

decryption key: KD

�– C = E(KE, P)
�– P = D(KD,C)
�– P = D(KD, E(KE, P))

Pfleeger, Security in Computing, ch. 2 21

Asymmetric Algorithm Diagram

encryption decryption
plaintext plaintextciphertext

KE KD

Pfleeger, Security in Computing, ch. 2 22

Asymmetric Algorithm Diagram

encryption decryption
plaintext plaintextciphertext

KE KD

Anyone can know
Nobody should know

Pfleeger, Security in Computing, ch. 2 23

So What Can You Do With This?

Encryption keep your data secret

Authentication you are who you say you are

Integrity the message hasn�’t been changed

Pfleeger, Security in Computing, ch. 2 24

Using Public Key Cryptography

Who knows what?
�– Everyone can know your public key
�– Nobody should ever know your private key

The keys are inverses of each other:
�– Anything encrypted with your public key can only be

decrypted with your private key.
�– Anything encrypted with your private key can only be

decrypted with your public key.

Pfleeger, Security in Computing, ch. 2 25

Sending an Encrypted Message
A

A
's public key

A
's private key

B

B
's

pu
bl

ic
 k

ey

B
's

pr
iv

at
e

ke
y

Remember:
Anyone can know your public key
Nobody should ever know your
private key

Pfleeger, Security in Computing, ch. 2 26

Sending an Encrypted Message
A

A
's public key

A
's private key

B

B
's

pu
bl

ic
 k

ey

B
's

pr
iv

at
e

ke
y

Msg.

A wants to send Msg. to B
Only B should be able to read it.

Pfleeger, Security in Computing, ch. 2 27

Sending an Encrypted Message
A

A
's public key

A
's private key

B

B
's

pu
bl

ic
 k

ey

B
's

pr
iv

at
e

ke
y

Msg.

A wants to send Msg. to B
Only B should be able to read it.

A encrypts Msg. with B's public key.
B decrypts with B's private key.

E(B
pub

)

Pfleeger, Security in Computing, ch. 2 28

Digital Signatures

Should work like handwritten signatures

�– Verify the sender of the document

A sends a message to B
�– How can A prove that she really sent the message?

Pfleeger, Security in Computing, ch. 2 29

Digitally Signed Messages

Msg.

A sends the msg. encrypted with A's private key
B decrypts with A's public key.

A wants to send a message to B.
B should verify only someone with A's public
key could have sent it.A

A
's public key

A
's private key

B

B
's

pu
bl

ic
 k

ey

B
's

pr
iv

at
e

ke
y

E(A
pri

)

Pfleeger, Security in Computing, ch. 2 30

Digitally Signed Messages

Msg.

Msg.

A

A
's public key

A
's private key

B

B
's

pu
bl

ic
 k

ey

B
's

pr
iv

at
e

ke
y

E(A
pri

)

Could also send two copies:
�– one clear
�– one encrypted with A's private key

Pfleeger, Security in Computing, ch. 2 31

Digitally Signed Messages

Msg.

Msg.

Problem with this?
A

A
's public key

A
's private key

B

B
's

pu
bl

ic
 k

ey

B
's

pr
iv

at
e

ke
y

E(A
pri

)

Pfleeger, Security in Computing, ch. 2 32

Digitally Signed Messages

Msg.

Msg.

A

A
's public key

A
's private key

B

B
's

pu
bl

ic
 k

ey

B
's

pr
iv

at
e

ke
y

E(A
pri

)

Problem with this?
�– if message is n bits, you're sending 2n bits

there's a solution using hash functions
details later

Pfleeger, Security in Computing, ch. 2 33

Digitally Signed Messages

Msg.

A

A
's public key

A
's private key

B

B
's

pu
bl

ic
 k

ey

B
's

pr
iv

at
e

ke
y

E(A
pri

)

Question: does this provide confidentiality?

Pfleeger, Security in Computing, ch. 2 34

Digitally Signed Messages

Msg.

A

A
's public key

A
's private key

B

B
's

pu
bl

ic
 k

ey

B
's

pr
iv

at
e

ke
y

E(A
pri

)

Question: does this provide confidentiality?

No

How could we provide confidentiality and authenticity?

Pfleeger, Security in Computing, ch. 2 35

Confidentiality and Authentication

A both signs and encrypts the message
Could either:

�– E
Apri

(E
Bpub

(M)) -or-

�– E
Bpub

(E
Apri

(M))

Pfleeger, Security in Computing, ch. 2 36

public key algorithms

first public algorithms in the 1970s

we'll do details of RSA

Pfleeger, Security in Computing, ch. 2 37

RSA Key Generation

choose large primes p, q; p q
calculate n = pq
calculate (n) = (p-1)(q-1)
choose e where gcd(e, (n))=1; 1 < e < (n)

choose d where d = e-1 mod (n);

Pfleeger, Security in Computing, ch. 2 38

Modular Arithmetic Review

Modular arithmetic review
How RSA works

Pfleeger, Security in Computing, ch. 2 39

What's the answer to these?

7+2 mod 10 = ?
8+2 mod 10 = ?
6+5 mod 10 = ?
22 + 22 mod 10 = ?

Pfleeger, Security in Computing, ch. 2 40

What's the answer to these?

7+2 mod 10 = 9
8+2 mod 10 = 0
6+5 mod 10 = 1
22 + 22 mod 10 = 4

Can even make an addition table:

Pfleeger, Security in Computing, ch. 2 41

Addition mod 10
+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8

Pfleeger, Security in Computing, ch. 2 42

Addition is reversible

In regular addition, we add -x to x to get 0
-x is x's additive inverse
Can we use this to do cryptography?
�– Add something to encrypt
�– Add an inverse to decrypt

Yes, but it'd be lame.

Pfleeger, Security in Computing, ch. 2 43

Multiplication mod 10
0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 3 6 7 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 4
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

Pfleeger, Security in Computing, ch. 2 44

Is multiplication reversible?

In regular arithmetic, x's multiplicative inverse is
1/x
We multiply x by 1/x to get 1
Can we use this for a cipher?
�– Multiply by some number k to encrypt
�– Multiply by 1/k to decrypt

Look again at multiplication mod 10

Pfleeger, Security in Computing, ch. 2 45

Multiplication mod 10
0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 3 6 7 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 4
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

Is it reversible?

Are there certain
values that are?

Pfleeger, Security in Computing, ch. 2 46

Multiplication mod 10
0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 3 6 7 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

Pfleeger, Security in Computing, ch. 2 47

Why do 1,3,7,9 work?

{1,3,7,9} work because they're relatively prime
with 10.
Recall: a and b are relatively prime if gcd(a,b)=1
When working mod n, all #s relatively prime with
n will have multiplicative inverses
�– Any number that isn't relatively prime will not have a

multiplicative inverse.

Pfleeger, Security in Computing, ch. 2 48

RSA Key Generation

choose large primes p, q; p q
calculate n = pq
calculate (n) = (p-1)(q-1)
choose e where gcd(e, (n))=1; 1 < e < (n)

choose d where d = e-1 mod (n);

public key = {e, n}
private key = {d, n}

Pfleeger, Security in Computing, ch. 2 49

Aside: The function

Euler's (Phi) function
(n) = the number of integers < n which are

relatively prime to n
If n is large, it's hard to calculate (n)
How hard?
�– no easier than factoring n

Pfleeger, Security in Computing, ch. 2 50

Aside: GCD

Review: gcd(a, b) is the largest positive integer
which divides a and b
Examples: gcd(12, 8)=4; gcd(7, 3)=1
If gcd(x, y) = 1, x and y are relatively prime
Finding gcd(a, b). Two ways:
�– 1) factor into primes, for each prime that appears in

both a's and b's list, look at the smallest exponent that
appears in each. Example follows.

�– 2) use the Euclidean Algorithm

Pfleeger, Security in Computing, ch. 2 51

Aside: Finding gcd(a, b)

Factor a and b into primes
For each prime factor that appears in both a and
b's list, take the smallest exponent, and combine
all.
Example gcd(250, 100)

250=2*53 100=22*52 gcd(250, 100)=2*52=50

Pfleeger, Security in Computing, ch. 2 52

Finding gcd(a,b)

Prime factorization is slow
Faster way. Use the fact:
�– gcd(a,b)=gcd(b, a mod b)

Pfleeger, Security in Computing, ch. 2 53

Aside: gcd(a,b) with Euclidean Algo.

Do the following steps:

a=q1b r1
b=q2 r1 r2
r 1=q3 r2 r3

r k 2=qk r k 1 r k
r k 1=qk 1 rk

but it makes more sense with an example

Pfleeger, Security in Computing, ch. 2 54

Euclidean Algorithm Example

193=27*7+4
7=1*4+3
4=1*3+1
3=3*1

So gcd(193,7) = 1

Find the gcd of 193 and 7
Do the Euclidean algorithm

Pfleeger, Security in Computing, ch. 2 55

Aside: Finding Inverses mod n

Use the Extended Euclidean Algorithm

192= (17)11+5
11=2(5)+1
5=5(1)+0

Pfleeger, Security in Computing, ch. 2 56

Aside: Finding Inverses mod n

Use the Extended Euclidean Algorithm

192= (17)11+5
11=
5=5(1)+0
2(5)+1

gcd(192,11) = 1

Pfleeger, Security in Computing, ch. 2 57

Aside: Finding Inverses mod n

Use the Extended Euclidean Algorithm

192= (17)11+5
11=2(5)+1
5=5(1)+0

Now work backwards:
1=11-2(5)
=11-2(192-17(11))
=11-2(192)+34(11)
=35(11)-2(192)

Pfleeger, Security in Computing, ch. 2 58

Aside: Finding Inverses mod n

Use the Extended Euclidean Algorithm

192= (17)11+5
11=2(5)+1
5=5(1)+0

Now work backwards:
1=11-2(5)
=11-2(192-17(11))
=11-2(192)+34(11)
=35(11)-2(192)

inverse of 11 mod 192

Pfleeger, Security in Computing, ch. 2 59

RSA Key Generation

choose large primes p, q; p q
�– p = 17, q=13

calculate n = pq
calculate (n) = (p-1)(q-1)
choose e where gcd(e, (n))=1; 1 < e < (n)

choose d where d = e-1 mod (n);

Pfleeger, Security in Computing, ch. 2 60

RSA Key Generation

choose large primes p, q; p q
�– p = 17, q=13

calculate n = pq
calculate (n) = (p-1)(q-1)
choose e where gcd(e, (n))=1; 1 < e < (n)

choose d where d = e-1 mod (n);

Pfleeger, Security in Computing, ch. 2 61

RSA Key Generation

choose large primes p, q; p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
choose e where gcd(e, (n))=1; 1 < e < (n)

choose d where d = e-1 mod (n);

Pfleeger, Security in Computing, ch. 2 62

RSA Key Generation

choose large primes p, q; p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
choose e where gcd(e, (n))=1; 1 < e < (n)

choose d where d = e-1 mod (n);

Pfleeger, Security in Computing, ch. 2 63

RSA Key Generation

choose large primes p, q; p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
�– 16*12 = 192

choose e where gcd(e, (n))=1; 1 < e < (n)

choose d where d = e-1 mod (n);

Pfleeger, Security in Computing, ch. 2 64

RSA Key Generation

choose large primes p, q; p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
�– 16*12 = 192

choose e where gcd(e, (n))=1; 1 < e < (n)

choose d where d = e-1 mod (n);

then throw away p and q.
we don't need them anymore.

(and if someone found them,
they'd be able to figure out d)

Pfleeger, Security in Computing, ch. 2 65

RSA Key Generation

choose large primes p, q; p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
�– 16*12 = 192

choose e where gcd(e, (n))=1; 1 < e < (n)
�– choose 11

choose d where d = e-1 mod (n);
Pfleeger, Security in Computing, ch. 2 66

RSA Key Generation

choose large primes p, q; p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
�– 16*12 = 192

choose e where gcd(e, (n))=1; 1 < e < (n)
�– choose 11

choose d where d = e-1 mod (n);

Pfleeger, Security in Computing, ch. 2 67

RSA Key Generation

choose large primes p, q; p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
�– 16*12 = 192

choose e where gcd(e, (n))=1; 1 < e < (n)
�– choose 11

choose d where d = e-1 mod (n);
�– pick 35

Pfleeger, Security in Computing, ch. 2 68

RSA Key Generation

choose large primes p, q; p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
�– 16*12 = 192

choose e where gcd(e, (n))=1
�– choose 11

choose d where d = e-1 mod (n);
�– pick 35

encryption key = {e,n}
 = {11,221}

decryption key = {d,n}
 = {35,221}

Pfleeger, Security in Computing, ch. 2 69

RSA Example

Encrypt �“FAMILY GUY�”
Use the keys that we generated
�– encryptiong key: {e=11, n=221}
�– decryption key: {d=35, n=221}

Pfleeger, Security in Computing, ch. 2 70

RSA Example

m F A M I L Y G U Y
m numeric 5 0 12 8 11 24 6 20 24

Pfleeger, Security in Computing, ch. 2 71

RSA Example

m F A M I L Y G U Y
m numeric 5 0 12 8 11 24 6 20 24

164 0 142 70 97 201 141 41 201me mod n m11 mod 221

Pfleeger, Security in Computing, ch. 2 72

RSA Example

m F A M I L Y G U Y
m numeric 5 0 12 8 11 24 6 20 24

164 0 142 70 97 201 141 41 201me mod n m11 mod 221

ciphertext

Pfleeger, Security in Computing, ch. 2 73

RSA Example

m F A M I L Y G U Y
m numeric 5 0 12 8 11 24 6 20 24

164 0 142 70 97 201 141 41 201
5 0 12 8 11 24 6 20 24

me mod n m11 mod 221
cd mod n c35 mod 221

Pfleeger, Security in Computing, ch. 2 74

RSA Example

m F A M I L Y G U Y
m numeric 5 0 12 8 11 24 6 20 24

164 0 142 70 97 201 141 41 201
5 0 12 8 11 24 6 20 24

me mod n m11 mod 221
cd mod n c35 mod 221

Original plaintext is recovered

Pfleeger, Security in Computing, ch. 2 75

RSA Security

RSA is thought to be secure because:
�– to find d (inverse of e mod (n))

need to know (n)
�– given n it's very difficult to find (n)

thought to be no easier than factoring n

Note: when p and q are 100 decimal digits
�– n is about 200 decimal digits
�– millions of years of computer time needed to factor

Pfleeger, Security in Computing, ch. 2 76

Why This Works

cd = (me)d = mk (n)+1=(m (n))km = (1)km=m

all of these are (mod n)

Pfleeger, Security in Computing, ch. 2 77

Why This Works

cd = (me)d = mk (n)+1=(m (n))km = (1)km=m

all of these are (mod n)
because e and d are inverses mod n
�– ed 1+k (n)

Pfleeger, Security in Computing, ch. 2 78

Why This Works

cd = (me)d = mk (n)+1=(m (n))km = (1)km=m

all of these are (mod n)
because e and d are inverses mod n
�– ed 1+k (n)

by rules of modular arithmetic (Fermat ...)
�– a ap (mod p) 1 ap-1 (mod p)
�– if p is prime, and a < p

Pfleeger, Security in Computing, ch. 2 79

key distribution still a problem
�– proving to whom a key belongs

slow
�– keys must be much longer than symmetric keys to

provide the same degree of security
�– hybrid scheme (public + session key) often used

RSA �– size of message to be encrypted is limited
by n.

public key crypto difficulties

Pfleeger, Security in Computing, ch. 2 80

hybrid scheme

public key crypto is slow
symmetric key is fast
�– but key distribution problem

solution:
�– create a symmetric key called session key
�– encrypt the data with the session key
�– encrypt the session key with the receiver's public key

Pfleeger, Security in Computing, ch. 2 81

bogus keys?

B gets a message claiming to be from A
message is signed with key claiming to be A's
signature matches the message
is B sure that it came from A?
related question. can I:
�– take a small picture of myself
�– attach it to a card saying that I'm Barack Obama
�– get a free ride on Air Force One?

Pfleeger, Security in Computing, ch. 2 82

Certificates
A Certification Authority verifies that your
public key belongs to you
�– e.g. Verisign

X.509 standard

Think Donnie Brasco

Pfleeger, Security in Computing, ch. 2 83

driver's licenses and digital certificates

why do you trust a driver's license but not the ID
card that I created saying I'm Barack Obama?

Pfleeger, Security in Computing, ch. 2 84

driver's licenses and digital certificates

why do you trust a driver's license but not the ID
card that I created saying I'm Barack Obama?
�– State of PA vouches the picture matches:

the name, address, etc. of the info on the card

if you trust PA, you believe info on license

digital certificate does same for public key

Pfleeger, Security in Computing, ch. 2 85

certificate verifies owner of public key
go to an HTTPS, e.g. tuportal.temple.edu

click on the lock on the browser

shows that certificate contains:
�– a public key
�– owner of the key
�– expiration date

certificate signed by Certification Authority (CA)
�– e.g. Verisign

you believe the public key is really Temple's if
�– the certificate is valid
�– you trust Verisign

Pfleeger, Security in Computing, ch. 2 86

verifying certificates

so how can know and trust Verisign's certificate?

Pfleeger, Security in Computing, ch. 2 87

verifying certificates

so how can know and trust Verisign's certificate?
�– some certificates are built into browser, OS
�– others can be later added manually
�– be careful which certificates you add

Pfleeger, Security in Computing, ch. 2 88

what happens when things go wrong?

when a bad guy gets a valid certificate?
�– microsoft/verisign debacle
�– mountain america credit union

certificate revocation lists

