AES Introduction

e DES:
- too weak

- 3DES too slow (esp in
software)

- theoretical attacks
(linear, diff.
cryptanalysis, weak
keys, ...)

* NIST calls for replacement
(1997)
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* Requirements:

- resistence to known
cryptanalytic attacks

- speed in hw and sw

- limited size (e.g. smart
cards)

- resistence to attacks on
implementations
(timing, power, etc.)

- instruction level
parallelism potential

- others

AES

winning algorithm: Rijndael (RINE dahl)

no mathematical operators

- endianness doesn't matter

variable

- block length

- key size

not Feistel structure
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Security in Computing

Chapter 2

Elementary Cryptography (part 4)

Pfleeger, Security in Computing, ch. 2

Chapter Outline

2.6 The AES Algorithm
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Rijndael Cycle

Byte substitution
- S-box

|
n times

Pfleeger, Security in Computing, ch. 2

Rijndael Cycle

Mix columns

- substitution

- arithmetic over GF(2%)
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n times

Rijndael Overview

* Plaintext fed into state array (matrix)
e There are 9, 11, or 13 cycles

- depends on whether 128, 192, or 256-bit keys are
used

» Each cycle:

- substitution
- shift
- mix column

- XOR with subkey
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Rijndael Cycle

4 4-byte blocks
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n times




* How many keys necessary for n people?

Secret Key Encryption

Secret Key Encryption

* How many keys necessary for n people?

- 1 person needs 0 keys

Pfleeger, Security in Computing, ch. 2 11 Pfleeger, Security in Computing, ch. 2 12
Rijndael Cycle
. Chapter Outline
o o
b o
(3
- g °
=
L4 o
- 2.7 Public Key Encryption
e Add round key .
- XOR with part of key .
Pfleeger, Security in Computing, ch. 2 Pfleeger, Security in Computing, ch. 2 10




Secret Key Encryption

* How many keys necessary for n people?

4

- 1 person needs 0 keys

- 2 people need 1 key

Secret Key Encryption

* How many keys necessary for n people?

24

- 1 person needs 0 keys

- 2 people need 1 key

- 3 people need 3 keys - 3 people need 3 keys
- 4 people need 6 keys - 4 people need 6 keys o
- 5 people need ? -
people nee 5
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Secret Key Encryption Secret Key Encryption

* How many keys necessary for n people?

- 1 person needs 0 keys

- 2 people need 1 key

O——0
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* How many keys necessary for n people?

N

- 1 person needs 0 keys
- 2 people need 1 key
- 3 people need 3 keys
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Secret Key Encryption Problems

* How many keys are necessary?
- O(n) keys
* How do you create and distribute the keys?

Asymmetric Algorithm

 encryption, decryption keys different
e encryption key: K
e decryption key: K

- C=E(,P)

- P=D(K,,C)

- P=D(Kp, E(K;, P))
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Secret Key Encryption Secret Key Encryption
* How many keys necessary for n people? * How many keys necessary for n people?
- 1 person needs 0 keys - 1 person needs 0 keys
- 2 people need 1 key . - 2 people need 1 key V‘
- 3 people need 3 keys - 3 people need 3 keys .
- 4 people need 6 keys L - 4 people need 6 keys o -
- 5 people need 10 keys O - - 5 people need 10 keys O |
« for 5 people: « for 5 people: * for n people?
-6+4=10 -6+4=10 -
2
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So What Can You Do With This?

* Encryption keep your data secret
* Authentication you are who you say you are

* Integrity the message hasn’t been changed

Using Public Key Cryptography

* Who knows what?

- Everyone can know your public key

- Nobody should ever know your private key
» The keys are inverses of each other:

- Anything encrypted with your public key can only be
decrypted with your private key.

- Anything encrypted with your private key can only be
decrypted with your public key.
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Asymmetric Algorithm Diagram Asymmetric Algorithm Diagram
K, K,
plaintext ciphertext plaintext

encryption decryption
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Anyone can know \
Nobody should know
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Sending an Encrypted Message

Digital Signatures

A+ Awants to send Msg. to B _ B  Should work like handwritten signatures
* Only B should be able to read it.
- Verify the sender of the document
> > > >
< é PN I » A sends a message to B
2. 2 =
s § = =Sl E - How can A prove that she really sent the message?
o =y
g < n | =
* A encrypts Msg. with B's public key.
B decrypts with B's private key.
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Sending an Encrypted Message Sending an Encrypted Message
A B A« A wants to send Msg. to B B
Remember: _ * Only B should be able to read it.
* Anyone can know your public key
> > * Nobody should ever know your o > > _ -
.;; :g private key § % é g 8 %
- o 2 =& = ~ 28 &
il z | & e z | =
Pfleeger, Security in Computing, ch. 2 25 Pfleeger, Security in Computing, ch. 2 26




Digitally Signed Messages

* Problem with this?
A B

Digitally Signed Messages

e Problem with this?
A

- if message is n bits, you're sending 2n bits

> > > >
» v 9] >
= g = P = - N
= = .2 b= o) o) ~4 [}
S =2 » 5 > 3 e Q <
% o = = S S > = g
- A B = 07 =l B3
< < m m A3 (-7‘; ‘% »
< < m M
* there's a solution using hash functions
e details later
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Digitally Signed Messages
Digitally Signed Messa
» A wants to send a message to B. g y S g ed CS5ages
A * B should verify only someone with A's public A
key could have sent it. B B
2 I A I A I A
9 = =4 Q 9 = =4 Q
= £ N - = £ Bl -
S =N =) > S =N =) >
S = g 2 S = g 2
@ ; o =8 @ ; o =8
& o 0 - & o 0 -
< < m [aa < < m [aa
* A sends the msg. encrypted with A's private key . -
« B decrypts with A's public key. Could also send two copies:
- one clear
- one encrypted with A's private key
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Confidentiality and Authentication

» A both signs and encrypts the message
e Could either:
-E _(E. (M)) -or-

Apri~ Bpub

-E, (B, (M)

Apri
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public key algorithms

e first public algorithms in the 1970s

e we'll do details of RSA
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Digitally Signed Messages

A Question: does this provide confidentiality? B

Koy 9reantd s,y
Koy orqnd s,y
B's private key

Y
B's public key
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Digitally Signed Messages

A Question: does this provide confidentiality? B
No

Koy areantd s,y
Aoy orqnd s,y
B's private key

Y
B's public key

How could we provide confidentiality and authenticity?
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What's the answer to these?

e 7+2mod 10 =7
e 8+2mod 10="7
e 6+5mod 10=7

22 +22mod 10 =7

What's the answer to these?

e 7+2mod 10=9
e 8+2mod 10=0
e 6+5mod 10=1

22 +22mod 10=4

e Can even make an addition table:
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RSA Key Generation Modular Arithmetic Review
 choose large primes p, q; p#q * Modular arithmetic review
e calculate n =pq  How RSA works
e calculate ¢o(n) = (p-1)(q-1)
» choose e where gcd(e, p(n))=1; 1<e <@(n)
e choose d where d = ¢ mod ¢(n);
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Multiplication mod 10

Is multiplication reversible?

x 01 2 3 4 5 6 7 8 9
0jo 0 0 0O 0O O O O O O ' . o ,
1l0 1 2 3 4 5 6 7 8 9 * In regular arithmetic, x's multiplicative inverse is
20 2 36 7 0 2 4 6 8 bx
3|0 3 6 9 2 5 8 1 4 7 * We multiply x by 1/x to get 1
410 4 8 2 6 0 4 8 2 6  Can we use this for a cipher?
50 5 0 5 0 5 0 5 0 5 - Multiply by some number k to encrypt
610 6 2 8 4 0 6 2 8 4 - Multiply by 1/k to decrypt
710 7 4 1.8 5 2 9 6 4 * Look again at multiplication mod 10
8]0 8 6 4 2 0 8 6 4 2
910 9 8 7 6 56 4 3 2 1
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Addition mod 10
+ 0 1 2 3 4567 8 9 Addition 1s reversible
ojo 1 2 3 4 5 6 7 8 9 .
111 2 3 4 5 8 7 8 9 0 * In regular addition, we add -x to x to get 0
2|2 3 4 5 6 7 8 9 0 1 » -x is X's additive inverse
3|3 4 5 6 7 8 9 0 1 2 * Can we use this to do cryptography?
g g g ? g g g ? ; g 2 - Add something to encrypt
- Add an inverse to decrypt
g 3 ; g g ? ; g 2 g g e Yes, but it'd be lame.
818 9 0 1 2 3 4 5 6 7
919 0 1 2 3 4 5 6 7 8
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Why do 1,3,7,9 work?

« {1,3,7,9} work because they're relatively prime
with 10.

» Recall: a and b are relatively prime if gcd(a,b)=

1

* When working mod n, all #s relatively prime with

n will have multiplicative inverses

- Any number that isn't relatively prime will not have a

multiplicative inverse.

RSA Key Generation

e choose large primes p, q; p#q

e calculate n =pq

e calculate o(n) = (p-1)(q-1)

e choose e where gcd(e, p(n))=1; 1<e <@(n)

e choose d where d = ¢ mod ¢(n);

 public key = {e, n}
e private key = {d, n}
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Multiplication mod 10 Multiplication mod 10
x 0123 4567 8 9 x 01 2/3 4 5 6 7 8 9
0f[0 00O OO OOOOO 0jo 0 0O 0O O O 0O/0 OO
110 1 2 3 4 5§ 6 7 8 9 1710 1 213 4 5 6 7 8 9
Is it reversible? 2|0 2 3 6 7 0 2 4 6 8 21|02 3 6 7 0 2 4 6 8
3|10 36 9 258147 3lo/3 6/9 2 5 81 4|7
Are there certain 410 4 8 2 6 0 4 8 2 6 4l0 4 8 2 6 0 4 8 2 6
values that are? 5|0 505 05 05 0 5 s5lo'8 058 0 5 o0/ 5 0 5
6|0 6 2 8 4 0 6 2 8 4 e6lo e 28 4 0 6/2 8 4
710 7 41 8 5 2 9 6 4
8/0 86 42086 4 2 4k Bd BEEEIE B
9lo 98 7 6 5 4 3 2 1 8|0 8 64 2 O 8|6 4 2
910 9 8|7 6 5 4 3 2 1
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Aside: Finding gcd(a, b)

 Factor a and b into primes

 For each prime factor that appears in both a and

b's list, take the smallest exponent, and combine
all.

» Example gcd(250, 100)
250=2%5°  100=2**5  gcd(250, 100)=2*5°=50
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Finding gcd(a,b)

e Prime factorization is slow

» Faster way. Use the fact:
- gcd(a,b)=gcd(b, a mod b)
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Aside: The ¢ function

Euler's ¢ (Phi) function

¢(n) = the number of integers < n which are
relatively prime to n

If n 1s large, it's hard to calculate ¢(n)
How hard?

- no easier than factoring n
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Aside: GCD

Review: gcd(a, b) is the largest positive integer
which divides a and b

Examples: gcd(12, 8)=4; gcd(7, 3)=1
If ged(x, y) = 1, x and y are relatively prime

Finding gcd(a, b). Two ways:

- 1) factor into primes, for each prime that appears in
both a's and b's list, look at the smallest exponent that
appears in each. Example follows.

- 2) use the Euclidean Algorithm
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Aside: Finding Inverses mod n

» Use the Extended Euclidean Algorithm

192=(17)11+5
11=2(5)+1
5=5(1)+0

Pfleeger, Security in Computing, ch. 2
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Aside: Finding Inverses mod n

» Use the Extended Euclidean Algorithm

192=(17)11+5
11=2(5)+1,
5=5(1)+0

\\

gcd(192,11) = 1

Pfleeger, Security in Computing, ch. 2
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Aside: gcd(a,b) with Euclidean Algo.

* Do the following steps:
a=q,b+r,
b=q,r +r,
riy=qsr,tr;

Piea=q V1 T7,

Vi 1=4r1 7y

* but it makes more sense with an example

Pfleeger, Security in Computing, ch. 2
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Euclidean Algorithm Example

* Find the gcd of 193 and 7

* Do the Euclidean algorithm
193=27*7+4
7=1%4+3
4=1%3+1
3=3*1

e So ged(193,7)=1

Pfleeger, Security in Computing, ch. 2
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RSA Key Generation

choose large primes p, q; p#q
- p=17, =13

RSA Key Generation

-p=17,qg=13
e calculate n =pq
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Aside: Finding Inverses mod n Aside: Finding Inverses mod n
» Use the Extended Euclidean Algorithm » Use the Extended Euclidean Algorithm
192=(17)11+5 192=(17)11+5
11=2(5)+1 11=2(5)+1
5=5(1)+0 5=5(1)+0
* Now work backwards: * Now work backwards:
1=11-2(5) 1=11-2(5)
=11-2(192-17(11)) inverse of 11 mod 192 =11-2(192-17(11))
=11-2(192)+34(11) S =11-2(192)+34(11)
=35(11)-2(192) =35(11)-2(192)
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RSA Key Generation

-p=17,qg=13
- 17*13 =221
- 16*¥12=192

RSA Key Generation
-p=17,qg=13
then throw away p and q.
* we don't need them anymore.
- 17*13 =221 (and if someone found them,
o they'd be able to figure out d)
- 16*12=192
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RSA Key Generation RSA Key Generation
-p=17,qg=13 -p=17,qg=13
e calculate n =pq .
- 17*13 =221 - 17*13 =221
. « calculate ¢o(n) = (p-1)(g-1)
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RSA Key Generation RSA Key Generation
“p=17.6713 " =177 encryption key = {e,n}
. . = {11,221}
- 17*13 =221 - 17*13 =221
¢ ¢ decryption key = {d,n}
- 16%12 =192 - 16%12 =192 = 352213
- choose 11 - choose 11
¢ choose d where d = ¢ mod ¢(n); .
~ pick 35 - pick 35
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RSA Key Generation RSA Key Generation
-p=17,¢=13 -p=17,¢=13
- 17*13 =221 - 17*13 =221
- 16*%12=192 - 16*%12=192
» choose e where ged(e, o(n))=1; 1<e <q@(n) .
- choose 11 - choose 11
. e choose d where d = ¢ mod ¢(n);
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RSA Example

RSA Example
m F A M I Y G U Y m F A M I L Y G U Y
m numeric 5 0 12 8 MM 24 6 20 24 m numeric 5 0 12 8 MM 24 6 20 24
m*modn m'"mod221 164 0 142 70 97 201 141 41 201 m®mod n m' mod 221 1640 142 70 97 201 141 471777756:1:
T
ciphertéxt
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RSA Example RSA Example
« Encrypt “FAMILY GUY” m F AM I L Y G U Y
m numeric 5 0 12 8 11 24 6 20 24
» Use the keys that we generated
- encryptiong key: {e=11, n=221}
- decryption key: {d=35, n=221}
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RSA Security

» RSA is thought to be secure because:
- to find d (inverse of e mod ¢(n))

* need to know ¢(n)
- given n it's very difficult to find ¢(n)

* thought to be no easier than factoring »
* Note: when p and g are 100 decimal digits
- n 1s about 200 decimal digits

- millions of years of computer time needed to factor

Why This Works
Cd — (me)d — mk(p(n)+1:(m(p(n))km — (l)km:m

* all of these are (mod n)
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RSA Example RSA Example
m F A M Il L Y G U Y m F A M I L Y G U Y
m numeric 5 0 12 8 11 24 6 20 24 m numetric 5 0 12 8 11 24 6 20 24

memodn m'"mod221 164 0 142 70 97 201 141 41 201
c®modn c®mod 221 5 0 12 8 11 24 6 20 24
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m®modn m'"mod221 164 0 142 70 97 201 141 41 201
c®modn c®mod 221 5 0 12 8 11 24 6 20 24

Original plaintext is recovered
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public key crypto difficulties

* key distribution still a problem
- proving to whom a key belongs
* slow

- keys must be much longer than symmetric keys to
provide the same degree of security

- hybrid scheme (public + session key) often used

* RSA —size of message to be encrypted is limited
by n.
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hybrid scheme

* public key crypto is slow
» symmetric key is fast

- but key distribution problem
* solution:

- create a symmetric key called session key
- encrypt the data with the session key

- encrypt the session key with the receiver's public key
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Why This Works

Cd — (me?d — mk(p(n)Jrl:(m(p(n))km — (1)km:m

P
/

e all of th §e/are (mod n)

e because e and d are inverses mod n
- ed = 1+ko(n)
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Why This Works

Cd — (me)d — mk(p(n)+1:(m(p(n))km — (1)km:m
1 Pl

/ s
/ e
/

* all of these are (mod n)

%
e
e

* because e and d are inverses mod n

/ //

- ed = 1+ko(n)
* by rules of modular arithmetic (Fermat ...)
- a=a"(mod p) — 1 =a"" (mod p)

- ifpis prime,and a <p
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driver's licenses and digital certificates

* why do you trust a driver's license but not the ID
card that I created saying I'm Barack Obama?
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driver's licenses and digital certificates

* why do you trust a driver's license but not the ID
card that I created saying I'm Barack Obama?

- State of PA vouches the picture matches:

« the name, address, etc. of the info on the card

« if you trust PA, you believe info on license

« digital certificate does same for public key

Pfleeger, Security in Computing, ch. 2 84

bogus keys?

B gets a message claiming to be from A
» message is signed with key claiming to be A's

* signature matches the message

1s B sure that it came from A?

related question. can I:

- take a small picture of myself
- attach it to a card saying that I'm Barack Obama

- get a free ride on Air Force One?
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Certificates

* A Certification Authority verifies that your
public key belongs to you
- e.g. Verisign

e X.509 standard

e Think Donnie Brasco
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verifying certificates

* so how can know and trust Verisign's certificate?

- some certificates are built into browser, OS
- others can be later added manually

- be careful which certificates you add
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what happens when things go wrong?

» when a bad guy gets a valid certificate?

- microsoft/verisign debacle

- mountain america credit union

e certificate revocation lists
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certificate verifies owner of public key
* gotoan HTTPS, e.g. tuportal.temple.edu

click on the lock on the browser

shows that certificate contains:
- apublic key
- owner of the key
- expiration date

certificate signed by Certification Authority (CA)

- e.g. Verisign

you believe the public key is really Temple's if
- the certificate is valid

- you trust Verisign
Pfleeger, Security in Computing, ch. 2 85

verifying certificates

* 5o how can know and trust Verisign's certificate?
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