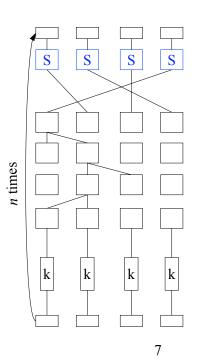
AES Introduction

 DES: too weak 3DES too slow (esp in software) theoretical attacks (linear, diff. cryptanalysis, weak keys,) NIST calls for replacement (1997) 	 Requirements: resistence to known cryptanalytic attacks speed in hw and sw limited size (<i>e.g.</i> smart cards) resistence to attacks on implementations (timing, power, etc.) instruction level parallelism potential others 	 winning algorithm: Rijndael (RINE dahl) no mathematical operators endianness doesn't matter variable block length key size not Feistel structure Pfleeger, Security in Computing, ch. 2	4
		Chapter Outline	
Security in	Computing	 2.1 Terminology and Background 2.2 Substitution Ciphers 2.3 Transpositions (Permutations) 	
Chaj	pter 2	 2.4 Making "Good" Encryption Algorithms 2.5 The Data Encryption Standard (DES) 2.6 The AES Algorithm 	
Elementary Cryp	otography (part 4)	 2.6 The AES Algorithm 2.7 Public Key Encryption 2.8 Uses of Encryption 	
Pfleeger, Security in Computing, ch. 2	1	• 2.9 Summary Pfleeger, Security in Computing, ch. 2	2

AES

Rijndael Cycle


- 4 4-byte blocks
- Byte substitution
 - S-box
- Shift rows
 - simple permutation
- Mix columns
 - substitution
 - arithmetic over GF(2⁸)
- Add round key
 - XOR with part of key

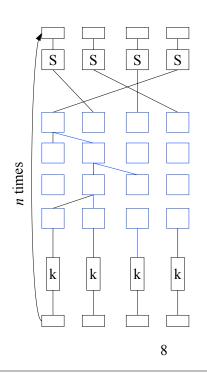
Pfleeger, Security in Computing, ch. 2

Rijndael Overview

- Plaintext fed into state array (matrix)
- There are 9, 11, or 13 cycles
 - depends on whether 128, 192, or 256-bit keys are used
- Each cycle:
 - substitution
 - shift
 - mix column
 - XOR with subkey

Pfleeger, Security in Computing, ch. 2

Rijndael Cycle


- 4 4-byte blocks
- Byte substitution
 - S-box
- Shift rows
 - simple permutation
- Mix columns
 - substitution
 - arithmetic over GF(2⁸)
- Add round key
 - XOR with part of key

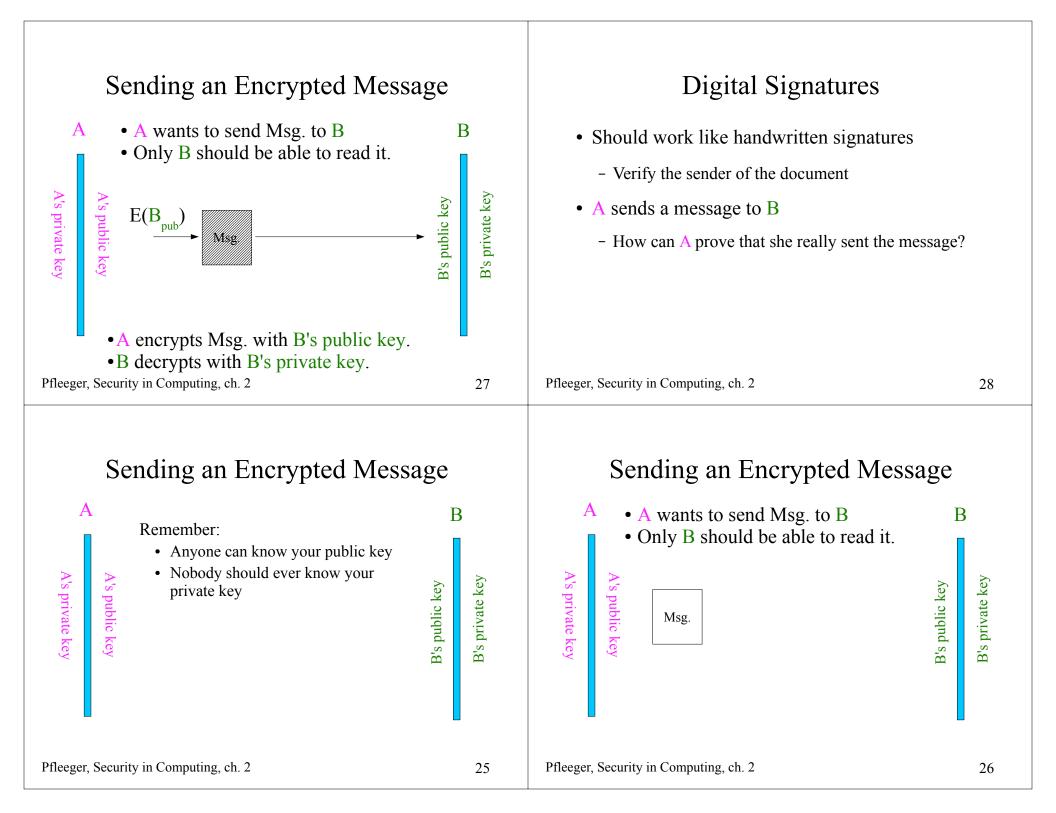
Pfleeger, Security in Computing, ch. 2

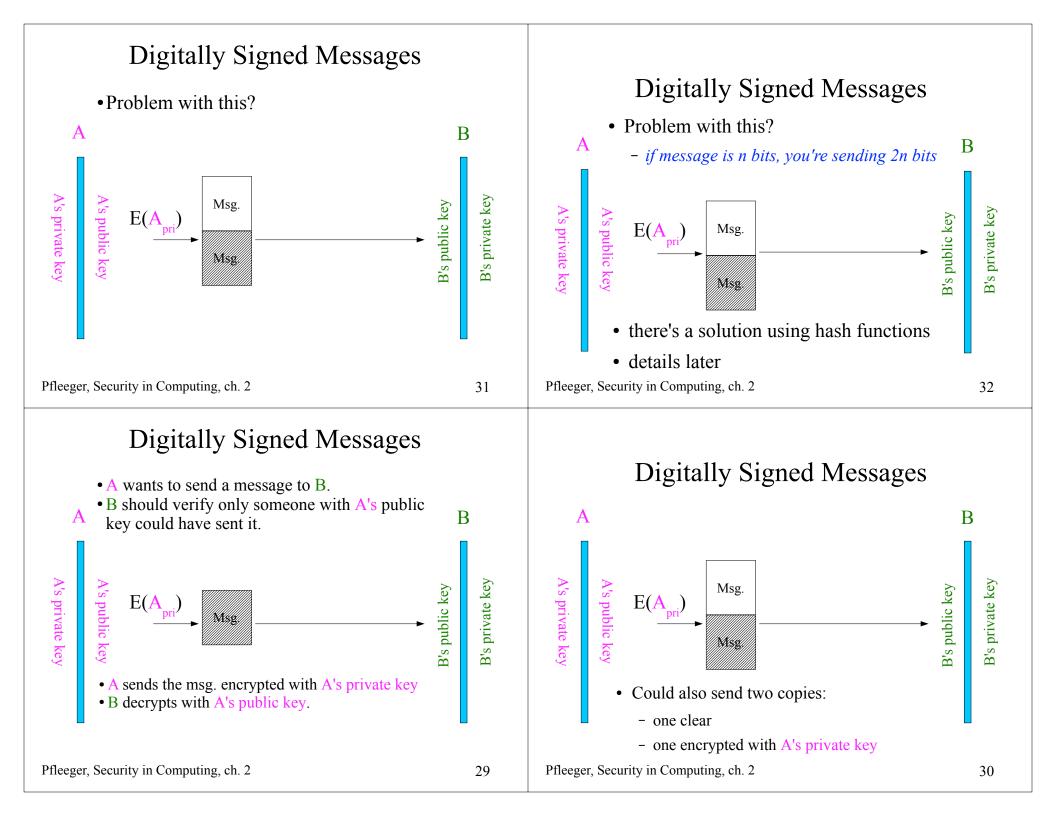
Rijndael Cycle

- 4 4-byte blocks
- Byte substitution
 - S-box
- Shift rows
 - simple permutation
- Mix columns
 - substitution
 - arithmetic over GF(2⁸)
- Add round key
 - XOR with part of key

Pfleeger, Security in Computing, ch. 2

u times


5


Secret Key Encryption How many keys necessary for <i>n</i> people? 		Secret Key Encryption How many keys necessary for <i>n</i> people? 1 person needs 0 keys 	
		0	
Pfleeger, Security in Computing, ch. 2	11	Pfleeger, Security in Computing, ch. 2	12
 Byte substitution S-box Shift rows simple permutation Mix columns substitution arithmetic over GF(2⁸) Add round key XOR with part of key 		 Chapter Outline 2.1 Terminology and Background 2.2 Substitution Ciphers 2.3 Transpositions (Permutations) 2.4 Making "Good" Encryption Algorithms 2.5 The Data Encryption Standard (DES) 2.6 The AES Algorithm 2.7 Public Key Encryption 2.8 Uses of Encryption 2.9 Summary 	10
Pfleeger, Security in Computing, ch. 2	9	Pfleeger, Security in Computing, ch. 2	10

 Secret Key Encryption How many keys necessary for <i>n</i> people? 1 person needs 0 keys 2 people need 1 key 3 people need 3 keys 4 people need 6 keys 		 Secret Key Encryption How many keys necessary for <i>n</i> people? 1 person needs 0 keys 2 people need 1 key 3 people need 3 keys 4 people need 6 keys 5 people need ? 	
Pfleeger, Security in Computing, ch. 2	15	Pfleeger, Security in Computing, ch. 2	16
Secret Key Encryption		Secret Key Encryption	
• How many keys necessary for <i>n</i> people?		• How many keys necessary for <i>n</i> people?	
- 1 person needs 0 keys		 1 person needs 0 keys 	
- 2 people need 1 key		 2 people need 1 key 3 people need 3 keys 	
Pfleeger, Security in Computing, ch. 2	13	Pfleeger, Security in Computing, ch. 2	14

 Secret Key Encryption Problems How many keys are necessary? O(n²) keys How do you create and distribute the keys? 		Asymmetric Algorithm • encryption, decryption keys different • encryption key: K_E • decryption key: K_D - $C = E(K_E, P)$ - $P = D(K_D, C)$ - $P = D(K_D, E(K_E, P))$	
Pfleeger, Security in Computing, ch. 2	9	Pfleeger, Security in Computing, ch. 2	20
Secret Key Encryption		Secret Key Encryption	
 How many keys necessary for <i>n</i> people? 1 person needs 0 keys 2 people need 1 key 3 people need 3 keys 4 people need 6 keys 5 people need 10 keys 6 for 5 people: 6+4 = 10 		• How many keys necessary for <i>n</i> people? - 1 person needs 0 keys - 2 people need 1 key - 3 people need 3 keys - 4 people need 6 keys - 5 people need 10 keys • for 5 people: - 6+4 = 10 $\frac{(n)(n-1)}{2} = O(n^2)$	
Pfleeger, Security in Computing, ch. 2	7	Pfleeger, Security in Computing, ch. 2	18

 So What Can You Do With This? Encryption keep your data secret Authentication you are who you say you are Integrity the message hasn't been changed 	 Using Public Key Cryptography Who knows what? Everyone can know your public key Nobody should ever know your private key The keys are inverses of each other: Anything encrypted with your <i>public</i> key can only be decrypted with your <i>private</i> key. Anything encrypted with your <i>private</i> key can only be decrypted with your <i>public</i> key.
Pfleeger, Security in Computing, ch. 2 23	Pfleeger, Security in Computing, ch. 2 24
Asymmetric Algorithm Diagram K_E K_D plaintext encryption ciphertext decryption plaintext	Asymmetric Algorithm Diagram
Pfleeger, Security in Computing, ch. 2 21	Pfleeger, Security in Computing, ch. 2 22

Confidentiality and Authentication • A both signs and encrypts the message • Could either: $-E_{Apri}(E_{Bpub}(M))$ -or- $-E_{Bpub}(E_{Apri}(M))$	on	public key algorithms • first public algorithms in the 1970s • we'll do details of RSA	
Pfleeger, Security in Computing, ch. 2	35	Pfleeger, Security in Computing, ch. 2	36
Digitally Signed Messages A Question: does this provide confidentiality? As private key $E(A_{pri}) \longrightarrow Mag$	B's private key	Digitally Signed Messages A Question: does this provide confidentiality? No A public key How could we provide confidentiality and authenticity	B's pr
Pfleeger, Security in Computing, ch. 2	33	Pfleeger, Security in Computing, ch. 2	34

What's the answer to these? • 7+2 mod 10 = ? • 8+2 mod 10 = ? • 6+5 mod 10 = ? • 22 + 22 mod 10 = ?		What's the answer to these? • 7+2 mod 10 = 9 • 8+2 mod 10 = 0 • 6+5 mod 10 = 1 • 22 + 22 mod 10 = 4 • Can even make an addition table:	
Pfleeger, Security in Computing, ch. 2	39	Pfleeger, Security in Computing, ch. 2	40
RSA Key Generation• choose large primes p, q; $p \neq q$ • calculate n = pq• calculate $\varphi(n) = (p-1)(q-1)$ • choose e where $gcd(e, \varphi(n))=1; 1 < e < \varphi(n)$ • choose d where $d = e^{-1} \mod \varphi(n);$		Modular Arithmetic Review • Modular arithmetic review • How RSA works	
Pfleeger, Security in Computing, ch. 2	37	Pfleeger, Security in Computing, ch. 2	38

		М	ulti	plic	catio	on r	nod	10			
× 0 1 2 3 4 5 6 7 8 9	0 0 0 0 0 0 0 0 0 0 0	1 0 1 2 3 4 5 6 7 8 9	2 0 2 3 6 8 0 2 4 6 8	3 0 3 6 9 2 5 8 1 4 7	4 0 4 7 2 6 0 4 8 2 6	5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	6 2 8 4 0 6 2 8 4 4 4	7 7 4 1 8 5 2 9 6 3	8 0 8 6 4 2 0 8 6 4 2	9 9 8 7 6 5 4 4 2 1	Is multiplication reversible? • In regular arithmetic, x's multiplicative inverse is 1/x • We multiply x by 1/x to get 1 • Can we use this for a cipher? - Multiply by some number k to encrypt - Multiply by 1/k to decrypt • Look again at multiplication mod 10
Pfleeger, S	Security	in Coi	nputing	g, ch. 2						43	Pfleeger, Security in Computing, ch. 2 44
+ 0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	1 1 2 3 4 5 6 7 8 9 0	2 3 4 5 6 7 8 9 0	3 4 5 6 7 8 9 0 1 2	3	5 6 7 8 9 0	6 7 8 9 0 1 2 3	7 8 9 0 1 2 3	8 9 0 1 2 3 4 5 6 7	9 0 1 2 3 4 5 6 7 8	Addition is reversible In regular addition, we add -x to x to get 0 -x is x's additive inverse Can we use this to do cryptography? Add something to encrypt Add an inverse to decrypt Yes, but it'd be lame.
Pfleeger, S	Security	in Coi	nputing	g, ch. 2						41	Pfleeger, Security in Computing, ch. 2 42

 {1,3,7,9} with 10. Recall: <i>a</i> a When worn will have - Any number 	Why do 1,3,7,9 work? work because they're <i>relatively prime</i> and <i>b</i> are relatively prime if $gcd(a,b)$ king mod n, all #s relatively prime w e multiplicative inverses ber that isn't relatively prime will not have	=1 rith	RSA Key Generation • choose large primes p, q; $p \neq q$ • calculate n = pq • calculate $\varphi(n) = (p-1)(q-1)$ • choose e where gcd(e, $\varphi(n)$)=1; $1 < e < \varphi(n)$ • choose d where d = e ⁻¹ mod $\varphi(n)$;
Pfleeger, Security in Co	Iultiplication mod 10	47	 public key = {e, n} private key = {d, n} Pfleeger, Security in Computing, ch. 2 48 Multiplication mod 10
Is it reversible? Are there certain values that are?	X 0 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 3 4 5 6 7 8 2 0 2 3 6 7 0 2 4 6 3 0 3 6 9 2 5 8 1 4 4 0 4 8 2 6 0 4 8 2 5 0 5 0 5 0 5 0 5 0 6 0 6 2 8 4 0 6 2 8 7 0 7 4 1 8 5 2 9 6 8 0 8 6 4 2 0 8 6 4 9 0 9 8 7 6 5 4	9 9 8 7 6 5 4 4 2 1	x 0 1 2 3 4 5 6 7 8 9 0
Pfleeger, Security in Co	omputing, ch. 2	45	Pfleeger, Security in Computing, ch. 2 46

 Aside: Finding gcd(a, b) Factor a and b into primes For each prime factor that appears in both a and b's list, take the smallest exponent, and combine all. Example gcd(250, 100) 250=2*5³ 100=2²*5² gcd(250, 100)=2*5²=50 	 Finding gcd(a,b) Prime factorization is slow Faster way. Use the fact: gcd(a,b)=gcd(b, a mod b) 		
Pfleeger, Security in Computing, ch. 2	51	Pfleeger, Security in Computing, ch. 2	52
 Aside: The φ function Euler's φ (Phi) function φ(n) = the number of integers < n which are relatively prime to n If n is large, it's hard to calculate φ(n) How hard? no easier than factoring n 		 Aside: GCD Review: gcd(a, b) is the largest positive integer which divides a and b <i>Examples:</i> gcd(12, 8)=4; gcd(7, 3)=1 If gcd(x, y) = 1, x and y are <i>relatively prime</i> Finding gcd(a, b). Two ways: 1) factor into primes, for each prime that appears it both a's and b's list, look at the smallest exponent of appears in each. Example follows. 2) use the Euclidean Algorithm 	n
Pfleeger, Security in Computing, ch. 2	49	Pfleeger, Security in Computing, ch. 2	50

Aside: Finding Inverses mod n	Aside: Finding Inverses mod n
• Use the Extended Euclidean Algorithm	• Use the Extended Euclidean Algorithm
192 = (17)11 + 5 11 = 2(5) + 1 5 = 5(1) + 0	192 = (17)11 + 5 11 = 2(5) + 1 5 = 5(1) + 0 gcd(192, 11) = 1
Pfleeger, Security in Computing, ch. 2 55	Pfleeger, Security in Computing, ch. 2 56
Aside: gcd(a,b) with Euclidean Algo.	Euclidean Algorithm Example
• Do the following steps: $a = q_1 b + r_1$ $b = q_2 r_1 + r_2$ $r_1 = q_3 r_2 + r_3$ \vdots $r_{k-2} = q_k r_{k-1} + r_k$ $r_{k-1} = q_{k+1} r_k$ • but it makes more sense with an example	 Find the gcd of 193 and 7 Do the Euclidean algorithm 193=27*7+4 7=1*4+3 4=1*3+1 3=3*1 So gcd(193,7) = 1
Pfleeger, Security in Computing, ch. 2 53	Pfleeger, Security in Computing, ch. 2 54

RSA Key Generation		RSA Key Generation	
• choose large primes p, q; $p \neq q$ - $p = 17$, $q=13$		 choose large primes p, q; p≠q p = 17, q=13 	
 calculate n = pq 		• calculate $n = pq$	
• calculate $\varphi(n) = (p-1)(q-1)$		• calculate $\varphi(n) = (p-1)(q-1)$	
 choose e where gcd(e, φ(n))=1; 1 < e < φ(n) choose d where d = e⁻¹ mod φ(n); 		 choose e where gcd(e, φ(n))=1; 1 < e < φ(n) choose d where d = e⁻¹ mod φ(n); 	
Pfleeger, Security in Computing, ch. 2	59	Pfleeger, Security in Computing, ch. 2	60
Aside: Finding Inverses mod n		Aside: Finding Inverses mod n	
• Use the Extended Euclidean Algorithm		• Use the Extended Euclidean Algorithm	
192=(17)11+5		192=(17)11+5	
11=2(5)+1 5=5(1)+0		11=2(5)+1 5=5(1)+0	
• Now work backwards:		• Now work backwards:	
1= 11-2(5) = 11-2(192-17(11))		1 = 11 - 2(5) <i>inverse of 11 mod 192</i> = 11 - 2(192 - 17(11))	
= 11-2(192)+34(11) = 35(11)-2(192)		= 11-2(192)+34(11) = 35(11)-2(192)	
Pfleeger, Security in Computing, ch. 2	57	Pfleeger, Security in Computing, ch. 2	58

RSA Key Generation	RSA Key Generation			
 choose large primes p, q; p≠q p = 17, q=13 calculate n = pq 17*13 = 221 calculate φ(n) = (p-1)(q-1) 16*12 = 192 choose e where gcd(e, φ(n))=1; 1 < e < φ(n) choose d where d = e⁻¹ mod φ(n); 	 choose large primes p, q; p p = 17, q=13 calculate n = pq 17*13 = 221 calculate φ(n) = (p-1)(q-1) 16*12 = 192 choose e where gcd(e, φ(n)) choose d where d = e⁻¹ mod e 	then throw away p and q. we don't need them anymore. (and if someone found them, they'd be able to figure out d) =1; $1 < e < \varphi(n)$		
Pfleeger, Security in Computing, ch. 2 63	Pfleeger, Security in Computing, ch. 2	64		
RSA Key Generation	RSA Key Ger	neration		
 choose large primes p, q; p≠q 	• choose large primes p, q; p	≠q		
- p = 17, q = 13	- p = 17, q=13			
• calculate n = pq	• calculate n = pq			
- 17*13 = 221	- 17*13 = 221			
• calculate $\varphi(n) = (p-1)(q-1)$	• calculate $\varphi(n) = (p-1)(q-1)$			
• choose e where $gcd(e, \phi(n))=1$; $1 \le e \le \phi(n)$	• choose e where $gcd(e, \phi(n))$:	$=1; 1 < e < \varphi(n)$		
• choose d where $d = e^{-1} \mod \varphi(n)$;	• choose d where $d = e^{-1} \mod e^{-1}$	φ(n);		

RSA Key Generation	RSA Key Generation
 choose large primes p, q; p≠q p = 17, q=13 calculate n = pq 17*13 = 221 calculate φ(n) = (p-1)(q-1) 16*12 = 192 choose e where gcd(e, φ(n))=1; 1 < e < φ(n) choose 11 choose d where d = e⁻¹ mod φ(n); 	 choose large primes p, q; p≠q p = 17, q=13 calculate n = pq
- pick 35 Pfleeger, Security in Computing, ch. 2 67	- pick 35 Pfleeger, Security in Computing, ch. 2 68
RSA Key Generation	RSA Key Generation
 choose large primes p, q; p≠q p = 17, q=13 calculate n = pq 17*13 = 221 calculate φ(n) = (p-1)(q-1) 16*12 = 192 choose e where gcd(e, φ(n))=1; 1 < e < φ(n) choose 11 	 choose large primes p, q; p≠q p = 17, q=13 calculate n = pq 17*13 = 221 calculate φ(n) = (p-1)(q-1) 16*12 = 192 choose e where gcd(e, φ(n))=1; 1 < e < φ(n) choose 11
• choose d where $d = e^{-1} \mod \phi(n)$; Pfleeger, Security in Computing, ch. 2 65	• choose d where $d = e^{-1} \mod \varphi(n)$; Pfleeger, Security in Computing, ch. 2 66

RSA Example	RSA Example			
<i>m</i> FAMILYGU <i>m numeric</i> 501281124620		<i>m</i> FAMILYGU <i>m numeric</i> 501281124620	-	
m ^e mod n m ¹¹ mod 221 164 0 142 70 97 201 141 41	1 201	m ^e mod n m ¹¹ mod 221 164 0 142 70 97 201 141 41 ciphertext	201	
Pfleeger, Security in Computing, ch. 2	71	Pfleeger, Security in Computing, ch. 2	72	
RSA Example		RSA Example		
 Encrypt "FAMILY GUY" Use the keys that we generated encryptiong key: {e=11, n=221} decryption key: {d=35, n=221} 			Y 24	
Pfleeger, Security in Computing, ch. 2	69	Pfleeger, Security in Computing, ch. 2	70	

 RSA is thought to be secure because: to find d (inverse of e mod φ(n)) need to know φ(n) given n it's very difficult to find φ(n) thought to be no easier than factoring n Note: when p and q are 100 decimal digits n is about 200 decimal digits millions of years of computer time needed to factor 							digi		Why This Works $c^{d} = (m^{e})^{d} = m^{k\phi(n)+1} = (m\phi^{(n)})^{k}m = (1)^{k}m = r$ • all of these are (mod n)	n		
Pfleeger, Sec	urity in Computing	, ch. 2								75	Pfleeger, Security in Computing, ch. 2	76
	RSA Example									RSA Example		
	m m numeric	F 5	A 0	M 12	І 8	L 11	Y 24	G 6	U 20	Y 24	<i>m</i> F A M I L Y G U <i>m numeric</i> 5 0 12 8 11 24 6 20	Y 24
	m ¹¹ mod 221 c ³⁵ mod 221	164 5	0 0	142 12	70 8	97 11	201 24	141 6	41 20	201 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201 24
											Original plaintext is recovered	
Pfleeger, Sec	urity in Computing	, ch. 2								73	Pfleeger, Security in Computing, ch. 2	74

public key crypto difficulties	hybrid scheme
 key distribution still a problem proving to whom a key belongs slow keys must be much longer than symmetric keys to provide the same degree of security hybrid scheme (public + session key) often used RSA – size of message to be encrypted is limited by <i>n</i>. 	 public key crypto is slow symmetric key is fast but key distribution problem solution: create a symmetric key called <i>session key</i> encrypt the data with the session key encrypt the session key with the receiver's public key
Pfleeger, Security in Computing, ch. 2 79	Pfleeger, Security in Computing, ch. 2 80
Why This Works $c^{d} = (m^{e})^{d} = m^{k\phi(n)+1} = (m\phi^{(n)})^{k}m = (1)^{k}m = m$ • all of these are (mod n) • because <i>e</i> and <i>d</i> are inverses mod n $-ed \equiv 1 + k\phi(n)$	Why This Works $c^{d} = (m^{e})^{d} = m^{k\varphi(n)+1} = (m\varphi^{(n)})^{k}m = (1)^{k}m = m$ • all of these are (mod n) • because <i>e</i> and <i>d</i> are inverses mod n $- ed \equiv 1 + k\varphi(n)$ • by rules of modular arithmetic (<i>Fermat</i>) $- a \equiv a^{p} (mod p) \rightarrow 1 \equiv a^{p-1} (mod p)$ - if p is prime, and a < p
Pfleeger, Security in Computing, ch. 2 77	Pfleeger, Security in Computing, ch. 2 78

	• why do you trust a driver's license but not the	ne ID
83	Pfleeger, Security in Computing, ch. 2	84
81	 Certificates A <i>Certification Authority</i> verifies that your public key belongs to you e.g. Verisign X.509 standard Think <i>Donnie Brasco</i> Pfleeger, Security in Computing, ch. 2	82
		 why do you trust a driver's license but not fl card that I created saying I'm Barack Obama - State of PA vouches the picture matches: the name, address, <i>etc.</i> of the info on the card if you trust PA, you believe info on license digital certificate does same for public key Pfleeger, Security in Computing, ch. 2 Certificates A <i>Certification Authority</i> verifies that your public key belongs to you e.g. Verisign X.509 standard Think <i>Donnie Brasco</i>

 verifying certificates so how can know and trust Verisign's certificates some certificates are built into browser, OS others can be later added manually be careful which certificates you add 	ıte?	 what happens when things go with when a bad guy gets a valid certificate? microsoft/verisign debacle mountain america credit union certificate revocation lists 	rong?
Pfleeger, Security in Computing, ch. 2	87	Pfleeger, Security in Computing, ch. 2	88
 certificate verifies owner of public k go to an HTTPS, <i>e.g.</i> tuportal.temple.edu click on the lock on the browser shows that certificate contains: a public key owner of the key expiration date certificate signed by <i>Certification Authority</i> (CA) <i>e.g.</i> Verisign you believe the public key is really Temple's if the certificate is valid you trust Verisign 	xey 85	verifying certificates • so how can know and trust Verisign's certificates	ficate? 86