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AES Introduction

DES:
�– too weak
�– 3DES too slow (esp in 

software)
�– theoretical attacks 

(linear, diff. 
cryptanalysis, weak 
keys, ...)

NIST calls for replacement 
(1997)

Requirements:
�– resistence to known 

cryptanalytic attacks
�– speed in hw and sw
�– limited size (e.g. smart 

cards)
�– resistence to attacks on 

implementations 
(timing, power, etc.)

�– instruction level 
parallelism potential

�– others Pfleeger, Security in Computing, ch. 2 4

AES

winning algorithm:  Rijndael (RINE dahl)
no mathematical operators
�– endianness doesn't matter

variable
�– block length
�– key size

not Feistel structure
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Rijndael Overview

Plaintext fed into state array (matrix)
There are 9, 11, or 13 cycles 
�– depends on whether 128, 192, or 256-bit keys are 

used
Each cycle:
�– substitution
�– shift
�– mix column
�– XOR with subkey
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Rijndael Cycle
4 4-byte blocks
Byte substitution
�– S-box

Shift rows
�– simple permutation

Mix columns
�– substitution
�– arithmetic over GF(28)

Add round key
�– XOR with part of key
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Secret Key Encryption

How many keys necessary for n people?
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Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
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Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
�– 2 people need 1 key
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Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
�– 2 people need 1 key
�– 3 people need 3 keys
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Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
�– 2 people need 1 key
�– 3 people need 3 keys
�– 4 people need 6 keys
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Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
�– 2 people need  1 key
�– 3 people need  3 keys
�– 4 people need  6 keys
�– 5 people need  ?
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Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
�– 2 people need 1 key
�– 3 people need 3 keys
�– 4 people need 6 keys
�– 5 people need 10 keys

for 5 people:
�– 6 + 4 = 10

Pfleeger, Security in Computing, ch. 2 18

Secret Key Encryption

How many keys necessary for n people?
�– 1 person needs 0 keys
�– 2 people need 1 key
�– 3 people need 3 keys
�– 4 people need 6 keys
�– 5 people need 10 keys

for 5 people:
�– 6 + 4 = 10 n n 1

2
=O n2

for n people?
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Secret Key Encryption Problems

How many keys are necessary?
�– O(n2) keys

How do you create and distribute the keys?
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Asymmetric Algorithm

encryption, decryption keys different
encryption key: KE

decryption key: KD

�– C = E(KE, P)
�– P = D(KD,C)
�– P = D(KD, E(KE, P))
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Asymmetric Algorithm Diagram

encryption decryption
plaintext plaintextciphertext

KE KD
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Asymmetric Algorithm Diagram

encryption decryption
plaintext plaintextciphertext

KE KD

Anyone can know
Nobody should know
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So What Can You Do With This?

Encryption keep your data secret

Authentication  you are who you say you are

Integrity  the message hasn�’t been changed
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Using Public Key Cryptography

Who knows what?
�– Everyone can know your public key
�– Nobody should ever know your private key

The keys are inverses of each other:
�– Anything encrypted with your public key can only be 

decrypted with your private key.
�– Anything encrypted with your private key can only be 

decrypted with your public key.
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Sending an Encrypted Message
A

A
's public key

A
's private key

B

B
's 

pu
bl

ic
 k

ey

B
's 

pr
iv

at
e 

ke
y

Remember:
Anyone can know your public key
Nobody should ever know your 
private key
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Sending an Encrypted Message
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A wants to send Msg. to B
Only B should be able to read it. 
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Sending an Encrypted Message
A

A
's public key

A
's private key

B

B
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pu
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Msg.

A wants to send Msg. to B
Only B should be able to read it. 

A encrypts Msg. with B's public key.
B decrypts with B's private key.

E(B
pub

)
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Digital Signatures

Should work like handwritten signatures

�– Verify the sender of the document

A sends a message to B
�– How can A prove that she really sent the message?
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Digitally Signed Messages

Msg.

A sends the msg. encrypted with A's private key
B decrypts with A's public key.

A wants to send a message to B.
B should verify only someone with A's public 
key could have sent it.A

A
's public key

A
's private key

B
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E(A
pri

)
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Digitally Signed Messages

Msg.

Msg.

A

A
's public key

A
's private key

B

B
's 

pu
bl

ic
 k

ey

B
's 

pr
iv

at
e 

ke
y

E(A
pri

)

Could also send two copies:
�– one clear
�– one encrypted with A's private key
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Digitally Signed Messages

Msg.

Msg.

Problem with this?
A
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Digitally Signed Messages

Msg.

Msg.

A

A
's public key

A
's private key

B

B
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E(A
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)

Problem with this?
�– if message is n bits, you're sending 2n bits

there's a solution using hash functions
details later
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Digitally Signed Messages

Msg.

A

A
's public key

A
's private key

B

B
's 
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E(A
pri

)

Question:  does this provide confidentiality?
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Digitally Signed Messages

Msg.

A

A
's public key

A
's private key

B

B
's 

pu
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B
's 

pr
iv
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E(A
pri

)

Question:  does this provide confidentiality?

No

How could we provide confidentiality and authenticity?
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Confidentiality and Authentication

A both signs and encrypts the message
Could either:

�– E
Apri

(E
Bpub

(M))  -or-

�– E
Bpub

(E
Apri

(M))
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public key algorithms

first public algorithms in the 1970s

we'll do details of RSA
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RSA Key Generation

choose large primes p, q;   p q
calculate n = pq
calculate (n) = (p-1)(q-1)
choose e where gcd(e, (n))=1;    1 < e < (n)

choose d where d = e-1 mod (n);
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Modular Arithmetic Review

Modular arithmetic review
How RSA works
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What's the answer to these?

7+2 mod 10 = ?
8+2 mod 10 = ?
6+5 mod 10 = ?
22 + 22 mod 10 = ?

Pfleeger, Security in Computing, ch. 2 40

What's the answer to these?

7+2 mod 10 = 9
8+2 mod 10 = 0
6+5 mod 10 = 1
22 + 22 mod 10 = 4

Can even make an addition table:
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Addition mod 10
+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8
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Addition is reversible

In regular addition, we add -x to x to get 0
-x is x's additive inverse
Can we use this to do cryptography?
�– Add something to encrypt
�– Add an inverse to decrypt

Yes, but it'd be lame.
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Multiplication mod 10
0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 3 6 7 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 4
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1
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Is multiplication reversible?

In regular arithmetic, x's multiplicative inverse is 
1/x
We multiply x by 1/x to get 1
Can we use this for a cipher?
�– Multiply by some number k to encrypt
�– Multiply by 1/k to decrypt

Look again at multiplication mod 10
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Multiplication mod 10
0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 3 6 7 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 4
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

Is it reversible?

Are there certain 
values that are?
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Multiplication mod 10
0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 3 6 7 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1
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Why do 1,3,7,9 work?

{1,3,7,9} work because they're relatively prime 
with 10.
Recall:  a and b are relatively prime if gcd(a,b)=1
When working mod n, all #s relatively prime with 
n will have multiplicative inverses
�– Any number that isn't relatively prime will not have a 

multiplicative inverse.
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RSA Key Generation

choose large primes p, q;   p q
calculate n = pq
calculate (n) = (p-1)(q-1)
choose e where gcd(e, (n))=1;    1 < e < (n)

choose d where d = e-1 mod (n);

public key = {e, n}
private key = {d, n}
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Aside:  The  function

Euler's  (Phi) function
(n) = the number of integers < n which are 

relatively prime to n
If n is large, it's hard to calculate (n)
How hard?
�– no easier than factoring n
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Aside:  GCD

Review:  gcd(a, b) is the largest positive integer 
which divides a and b
Examples:  gcd(12, 8)=4; gcd(7, 3)=1
If gcd(x, y) = 1, x and y are relatively prime
Finding gcd(a, b).  Two ways:
�– 1) factor into primes, for each prime that appears in 

both a's and b's list, look at the smallest exponent that 
appears in each.  Example follows.

�– 2) use the Euclidean Algorithm
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Aside:  Finding gcd(a, b)

Factor a and b into primes
For each prime factor that appears in both a and 
b's list, take the smallest exponent, and combine 
all.
Example gcd(250, 100)

250=2*53 100=22*52 gcd(250, 100)=2*52=50
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Finding gcd(a,b)

Prime factorization is slow
Faster way.  Use the fact:
�– gcd(a,b)=gcd(b, a mod b)



Pfleeger, Security in Computing, ch. 2 53

Aside: gcd(a,b) with Euclidean Algo.

Do the following steps:

a=q1b r1
b=q2 r1 r2
r 1=q3 r2 r3

r k 2=qk r k 1 r k
r k 1=qk 1 rk

but it makes more sense with an example
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Euclidean Algorithm Example

193=27*7+4
7=1*4+3
4=1*3+1
3=3*1

So gcd(193,7) = 1

Find the gcd of 193 and 7
Do the Euclidean algorithm
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Aside:  Finding Inverses mod n

Use the Extended Euclidean Algorithm

192= (17)11+5
11=2(5)+1
5=5(1)+0

Pfleeger, Security in Computing, ch. 2 56

Aside:  Finding Inverses mod n

Use the Extended Euclidean Algorithm

192= (17)11+5
11=
5=5(1)+0
2(5)+1

gcd(192,11) = 1
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Aside:  Finding Inverses mod n

Use the Extended Euclidean Algorithm

192= (17)11+5
11=2(5)+1
5=5(1)+0

Now work backwards:
1=11-2(5)
=11-2(192-17(11))
=11-2(192)+34(11)
=35(11)-2(192)
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Aside:  Finding Inverses mod n

Use the Extended Euclidean Algorithm

192= (17)11+5
11=2(5)+1
5=5(1)+0

Now work backwards:
1=11-2(5)
=11-2(192-17(11))
=11-2(192)+34(11)
=35(11)-2(192)

inverse of 11 mod 192
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RSA Key Generation

choose large primes p, q;   p q
�– p = 17, q=13

calculate n = pq
calculate (n) = (p-1)(q-1)
choose e where gcd(e, (n))=1;    1 < e < (n)

choose d where d = e-1 mod (n);
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RSA Key Generation

choose large primes p, q;   p q
�– p = 17, q=13

calculate n = pq
calculate (n) = (p-1)(q-1)
choose e where gcd(e, (n))=1;    1 < e < (n)

choose d where d = e-1 mod (n);
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RSA Key Generation

choose large primes p, q;   p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
choose e where gcd(e, (n))=1;    1 < e < (n)

choose d where d = e-1 mod (n);
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RSA Key Generation

choose large primes p, q;   p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
choose e where gcd(e, (n))=1;    1 < e < (n)

choose d where d = e-1 mod (n);
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RSA Key Generation

choose large primes p, q;   p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
�– 16*12 = 192

choose e where gcd(e, (n))=1;    1 < e < (n)

choose d where d = e-1 mod (n);
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RSA Key Generation

choose large primes p, q;   p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
�– 16*12 = 192

choose e where gcd(e, (n))=1;    1 < e < (n)

choose d where d = e-1 mod (n);

then throw away p and q.
we don't need them anymore.

(and if someone found them, 
they'd be able to figure out d)
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RSA Key Generation

choose large primes p, q;   p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
�– 16*12 = 192

choose e where gcd(e, (n))=1;    1 < e < (n)
�– choose 11

choose d where d = e-1 mod (n);
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RSA Key Generation

choose large primes p, q;   p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
�– 16*12 = 192

choose e where gcd(e, (n))=1;    1 < e < (n)
�– choose 11

choose d where d = e-1 mod (n);
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RSA Key Generation

choose large primes p, q;   p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
�– 16*12 = 192

choose e where gcd(e, (n))=1;    1 < e < (n)
�– choose 11

choose d where d = e-1 mod (n); 
�– pick 35
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RSA Key Generation

choose large primes p, q;   p q
�– p = 17, q=13

calculate n = pq
�– 17*13 = 221

calculate (n) = (p-1)(q-1)
�– 16*12 = 192

choose e where gcd(e, (n))=1
�– choose 11

choose d where d = e-1 mod (n); 
�– pick 35

encryption key =  {e,n}
                          =  {11,221}

decryption key =  {d,n}
                          =  {35,221}
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RSA Example

Encrypt �“FAMILY GUY�”
Use the keys that we generated
�– encryptiong key: {e=11, n=221}
�– decryption key:   {d=35, n=221}
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RSA Example

m F A M I L Y G U Y
m numeric 5 0 12 8 11 24 6 20 24
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RSA Example

m F A M I L Y G U Y
m numeric 5 0 12 8 11 24 6 20 24

164 0 142 70 97 201 141 41 201me mod n m11 mod 221
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RSA Example

m F A M I L Y G U Y
m numeric 5 0 12 8 11 24 6 20 24

164 0 142 70 97 201 141 41 201me mod n m11 mod 221

ciphertext



Pfleeger, Security in Computing, ch. 2 73

RSA Example

m F A M I L Y G U Y
m numeric 5 0 12 8 11 24 6 20 24

164 0 142 70 97 201 141 41 201
5 0 12 8 11 24 6 20 24

me mod n m11 mod 221
cd mod n c35 mod 221
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RSA Example

m F A M I L Y G U Y
m numeric 5 0 12 8 11 24 6 20 24

164 0 142 70 97 201 141 41 201
5 0 12 8 11 24 6 20 24

me mod n m11 mod 221
cd mod n c35 mod 221

Original plaintext is recovered
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RSA Security

RSA is thought to be secure because:
�– to find d (inverse of e mod (n))

need to know (n)
�– given n it's very difficult to find (n)

thought to be no easier than factoring n

Note: when p and q are 100 decimal digits
�– n is about 200 decimal digits
�– millions of years of computer time needed to factor
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Why This Works

cd = (me)d = mk (n)+1=(m (n))km = (1)km=m

all of these are (mod n)
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Why This Works

cd = (me)d = mk (n)+1=(m (n))km = (1)km=m

all of these are (mod n)
because e and d are inverses mod n
�– ed  1+k (n)
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Why This Works

cd = (me)d = mk (n)+1=(m (n))km = (1)km=m

all of these are (mod n)
because e and d are inverses mod n
�– ed  1+k (n)

by rules of modular arithmetic (Fermat ...)
�– a  ap (mod p)  1  ap-1 (mod p)
�– if p is prime, and a < p
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key distribution still a problem
�– proving to whom a key belongs

slow
�– keys must be much longer than symmetric keys to 

provide the same degree of security
�– hybrid scheme (public + session key) often used

RSA �– size of message to be encrypted is limited 
by n.

public key crypto difficulties
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hybrid scheme

public key crypto is slow
symmetric key is fast
�– but key distribution problem

solution:
�– create a symmetric key called session key
�– encrypt the data with the session key
�– encrypt the session key with the receiver's public key
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bogus keys?

B gets a message claiming to be from A
message is signed with key claiming to be A's
signature matches the message
is B sure that it came from A?
related question.  can I:
�– take a small picture of myself
�– attach it to a card saying that I'm Barack Obama
�– get a free ride on Air Force One?
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Certificates
A Certification Authority verifies that your 
public key belongs to you
�– e.g. Verisign

X.509 standard

Think Donnie Brasco
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driver's licenses and digital certificates

why do you trust a driver's license but not the ID 
card that I created saying I'm Barack Obama?
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driver's licenses and digital certificates

why do you trust a driver's license but not the ID 
card that I created saying I'm Barack Obama?
�– State of PA vouches the picture matches:

the name, address, etc. of the info on the card

if you trust PA, you believe info on license

digital certificate does same for public key
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certificate verifies owner of public key
go to an HTTPS, e.g. tuportal.temple.edu

click on the lock on the browser

shows that certificate contains:
�– a public key
�– owner of the key
�– expiration date

certificate signed by Certification Authority (CA)
�– e.g. Verisign

you believe the public key is really Temple's if
�– the certificate is valid
�– you trust Verisign
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verifying certificates

so how can know and trust Verisign's certificate?
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verifying certificates

so how can know and trust Verisign's certificate?
�– some certificates are built into browser, OS
�– others can be later added manually
�– be careful which certificates you add
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what happens when things go wrong?

when a bad guy gets a valid certificate?
�– microsoft/verisign debacle
�– mountain america credit union

certificate revocation lists


